作者:杜兴华; 时间:2017-01-01 点击数:
杜兴华;
1:东北石油大学数学与统计学院
摘要(Abstract):
利用多项式完全判别系统法,求出(2+1)维广义Calogero-Bogoyavlenskii-Schiff方程的所有单行波解的分类和表示(包括新解),显示参数变化导致的分叉现象,从局域运动转变到周期波动,体现模型丰富的物理内涵。
关键词(KeyWords):多项式完全判别系统;行波解;广义Calogero-Bogoyavlenskii-Schiff方程;分叉现象
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11375030)
作者(Author):杜兴华;
Email:
参考文献(References):
[1]Ablowitz M J,Clarkson P A.Soliton,nonlinear evolution equation and inverse scattering[M].Cambridge:Cambridge University Press,1991.
[2]谷超豪.孤立子理论及其应用[M].杭州:浙江科技出版社,1990.Gu Chaohao.Soliton theory and its applications[M].Hangzhou:Zhejiang Science and Technology Publishing House,1990.
[3]Matveev V B,Salle M A.Darboux transformations and solitons[M].Berlin:Springer,1991.
[4]Estabrook F B,Wahlquist H D.Prolongation structures of nonlinear evolution equations,Ⅱ[J].Journal of Mathematical Physics,1976,17(7):1293-1297.
[5]Zhang D G.Integrability of fermionic extensions of the Burgers equation[J].Physics Letters A,1996,223(6):436-438.
[6]Hereman W,Takaoka M.Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA[J].Journal of Physics A:Mathematical and General,1990,23(21):4805-4822.
[7]Olver P J.Applications of Lie group to differential equation[M].New York:Springer,1986.
[8]Bluman G W,Kumei S.Symmetries and differential equations[M].Berlin:Springer,1989.
[9]Parkes E J,Duffy B R.An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J].Computer Physics Communications,1996,98(3):288-300.
[10]Liu C S.Exact traveling wave solutions for(1+1)-dimensional dispersive long wave equation[J].Chinese Physics Society,2005,14(9):1710-1715.
[11]Liu C S.Classification of all single traveling wave solutions to Calogero-Degasperis-Focas equation[J].Communications in Theoretical Physics,2007,48(4):601-604.
[12]Liu C S.Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations[J].Computer Physics Communications,2010,181(2):317-324.
[13]Liu C S.All single traveling wave solutions to(3+1)-Dimensional Nizhnok-Novikov-Veselov equation[J].Communications in Theoretical Physics,2006,45(6):991-992.
[14]杜兴华.2+1维Bousenisq方程的精确行波解[J].大庆石油学院学报,2007,31(1):118-119.Du Xinghua.Exact traveling wave solutions to(2+1)-dimensional Bousenisq equation[J].Journal of Daqing Petroleum Institute,2007,31(1):118-119.
[15]Li B,Chen Y.Exact analytical solutions of the generalized Calogero-Bogoyavlenskii-Schiff equation using symbolic computation[J].Czechos lovak Journal of Physics,2004,54(5):517-528.
[16]张焕萍,陈勇,李彪.2+1维广义Calogero-Bogoyavlenskii-Schiff方程的无穷对称及其约化[J].物理学报,2009,58(11):7393-7396.Zhang Huanping,Chen Yong,Li Biao.Infinitely many symmetries and symmetry reduction of(2+1)-dimensinal generalized Calogero-Bogoyavlenskii-Schiff equation[J].Acta Physica Sinica,2009,58(11):7393-7396.
[17]套格图桑.(2+1)维广义Calogero-Bogoyavlenskii-Schiff方程的无穷序列类孤子解[J].物理学报,2013,62(21):210201-1-7.Taogetusang.New infinite sequence soliton-like solutions of(2+1)-dimensinal generalized Calogero-Bogoyavlenskii-Schiff equation[J].Acta Physica Sinica,2013,62(21):210201-1-7.
[18]Bogoyavlenskii O I.Overturning solitons in new two-dimensinal integrable equations[J].Mathematics of the USSR-lzvestiya,1990,34(2):245-259.
[19]Calogero F.A method to generate solvable nonlinear evolution equations[J].Lettere al Nuovo Cimento,1975,14(12):443-447.
[20]Schiff J.Integrabillty of Chern-Simons-Higgs vortex equations and a reduction of the Self-Dual Yang-Mills equations to three dimensions[M]//Leri D,Winternitz.Painleve trascendents.New York:Plenum Press,1992:393-405.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: