作者:金元峰;宋健楠;李霄;侯成敏; 时间:2017-01-01 点击数:
金元峰;宋健楠;李霄;侯成敏;
1:延边大学理学院
摘要(Abstract):
考虑离散分数阶边值问题{Δ_(ν+a)~ν(t~(N-1)φ(b▽~νu(t)))+t~(N-1)[λ|u(t)|m~(-2) u(t)-f(t,u(t))]=0,t∈[a,b]N_a;[b▽~νu(t)]_t=b+ν=[b▽~νu(t)]t=a+ν-1=0。其中ν∈(0,1),a,b∈Z,0≤a0,m≥2为固定实数。f(·,u)∶[-d,d]N-d×R→R是关于第二个变量的连续函数且满足Ambrosetti-Rabinorwitz条件。建立变分框架,利用临界点定理,得到离散分数阶边值问题解的存在性结果。
关键词(KeyWords):分数阶差分方程;边值问题;临界点定理;存在性
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11161049,11361066)
作者(Author):金元峰;宋健楠;李霄;侯成敏;
Email:
参考文献(References):
[1]Jarad F,Baleanu D.Discrete variational principles for Lagrangians linear in velocities[J].Reports on Mathematical Physics,2007,59(1):33-43.
[2]Atici F M,Eloe P W.A transform method in discrete fractional calculus[J].Int.J.Difference Equ,2007,2(2):165-176.
[3]Goodrich C S.Solutions to a discrete right-focal fractional boundary value problem[J].Int.J.Difference Equ,2010,5(2):195-216.
[4]Atici F M,Eloe P W.Two-point boundary value problems for finite fractional difference equations[J].Journal of Difference Equations&Applications,2011,17(4):445-456.
[5]Goodrich C S.On discrete sequential fractional boundary value problems[J].Journal of Mathematical Analysis&Applications,2012,385(1):111-124.
[6]Goodrich C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].Computers&Mathematics with Applications,2011,61(2):191-202.
[7]Goodrich C S.Continuity of solutions to discrete fractional initial value problems[J].Computers&Mathematics with Applications,2010,59(11):3489-3499.
[8]Xie Zuoshi,Jin Yuanfeng,Hou Chengmin.Multiple solutions for a fractional difference boundary value problem via variational approach[J].Abstract&Applied Analysis,2012:1-16.
[9]He Yansheng,Hou Chengmin.Existence of solutions for discrete fractional boundary value problems with p-Laplacian operator[J].Journal of Mathematical Research with Applications,2014,34(2):197-208.
[10]Ibrahim R W,Jalab H A.Existence of a class of fractional difference equations with two point boundary value problem[J].Advances in Difference Equations,2015(1):1-12.
[11]Xie Zuoshi,Hou Chengmin.Properties of right fractional sum and right fractional difference operators and application[J].Advances in Difference Equations,2015(1):1-16.
[12]Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations[M].Providence,RI,USA:American Mathematical Society,1986:100.
[13]Dinca G,Jebelean P,Mawhin J.Variational and topological methods for Dirichlet problems with p-Laplacian[J].Portugaliae Mathematica,2001,58(3):339-378.
[14]张瑜,侯成敏.带有p-Laplacian算子的分数阶多点边值问题单调正解的存在性[J].东北石油大学学报,2014,38(6):116-125.Zhang Yu,Hou Chengmin.Existence of monotone positive solution for fractional multipoint boundary value problem with p-Laplacianoperator[J].Journal of Northeast Petroleum University,2014,38(6):116-126.
[15]艾尚明,卢源秀,葛琦,等.一类带有成对边界条件的奇异半正分数阶差分系统的正解[J].东北石油大学学报,2014,38(4):103-108.Ai Shangming,Lu Yuanxiu,Ge Qi,et al.Positive solutions for a class of singular semipositione fractional difference system with coupled boundary conditions[J].Journal of Northeast Petroleum University,2014,38(4):103-118.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: