作者:葛琦;侯成敏; 时间:2016-01-01 点击数:
葛琦;侯成敏;
1:延边大学理学院数学系
摘要(Abstract):
研究一类带有参数的分数阶差分方程正解的存在性和不存在性。首先,分析该方程的格林函数的一些性质;然后,利用Banach空间锥上的不动点指数定理和Krasnosel'skii不动点定理,证明当参数属于不同范围时,该方程正解的存在性;最后,利用反证法,证明当参数属于不同范围时,该方程正解的不存在性。
关键词(KeyWords):Green函数;不动点指数定理;不动点定理;不存在性
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11161049);; 吉林省教育厅“十二五”科技项目(吉教科合字[2015]第36号)
作者(Author):葛琦;侯成敏;
Email:
参考文献(References):
[1]Goodrich C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].J.Comput.Math.Appl,2011,61(2):191-202.
[2]Goodrich C S.On a fractional boundary value problem with fractional boundary conditions[J].Appl Math Lett,2012,25(8):1101-1105.
[3]Goodrich C S.Solutions to a discrete right-focal boundary value problem[J].Int.J.Difference Equ,2010,5(2):195-216.
[4]Atici F M,engül S.Modeling with fractional difference equations[J].J.Math.Anal.Appl,2010,369(1):1-9.
[5]Goodrich C S.On discrete sequential fractional boundary value problems[J].J.Math.Anal.Appl,2012,385(1):111-124.
[6]Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].J.Applied Mathematics and Computation,2011,217(9):4740-4753.
[7]张瑜,孙明哲,何延生.一类分数阶差分方程解的吸引性[J].延边大学学报:自然科学版,2012,38(2):95-99.Zhang Yu,Sun Mingzhe,He Yansheng.Atrractivity of a class of fractional difference equations[J].Journal of Yanbian University:Natural Science,2012,38(2):95-99.
[8]葛琦,侯成敏.一类分数阶差分方程边值问题多重正解的存在性[J].东北石油大学学报,2012,36(4):101-110.Ge Qi,Hou Chengmin.Existence of multiple positive solutions for a class of fractional difference equations boundary value problems[J].Journal of Northeast Petroleum University,2012,36(4):101-110.
[9]葛琦,侯成敏.一类分数阶差分方程边值问题递增正解的存在性[J].吉林大学学报:理学版,2013,51(1):47-52.Ge Qi,Hou Chengmin.Existence of positive and nondecreasing solution for a class of fractional difference equations boundary value problems[J].Journal of Jilin University:Science Edition,2013,51(1):47-52.
[10]慎闯,何延生.一类带有分数阶非局部边值条件的分数阶差分方程解的存在性[J].烟台大学学报:自然科学与工程版,2013,26(2):90-96.Shen Chuang,He Yansheng.Existence of solutions for a class of fractional difference equation with nonlocal fractional boundary conditions[J].Journal of Yantai University:Natural Science and Engineering Edition,2013,26(2):90-96.
[11]慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报:自然科学版,2013,16(1):12-16.Shen Chuang,He Yansheng,Hou Chengmin.Existence of solution for a class of sequential fractional difference equation[J].Journal of Yangzhou University:Natural Science Edition,2013,16(1):12-16.
[12]Chen Fulai,Luo Xiannan,Zhou Yong.Existence results for nonlinear fractional difference equation[J].J.Advances in Difference Equations,2011,2011(1):1-12.
[13]Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].Comput.Math.Appl.2011,217(9):4740-4753.
[14]Huang Zhongmin,Hou Chengmin.Solvability of nonlocal fractional boundary value problems[J].Discrete Dynamics in Nature and Society,2013,2013(1):1-9.
[15]艾尚明,卢源秀,高鹏,等.一类带有成对边界条件的奇异半正分数阶差分系统的正解[J].东北石油大学学报,2014,38(4):103-118.Ai Shangming,Lu Yuanxiu,Gao Peng,et al.Positive solutions for a class of singular semipositione fractional difference system with coupled boundary conditions[J].Journal of Northeast Petroleum University,2014,38(4):103-118.
[16]Kang Shugui,Li Yan,Chen Huiqin.Positive solutions to boundary value problems of fractional difference equation with nonlocal conditions[J].Advances in Difference Equations,2014(1):1-12.
[17]Han Zhenlai,Pan Yuanyuan,Yang Dianwu.The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter[J].Applied Mathematics Letters,2014,36(1):1-6.
[18]Dun Tiaoxia,Chen Pengyu.Existence of positive solutions for nonlinear third-order boundary value problems[J].Journal of Mathematics,2014(1):1-5.
[19]Zhao Yige,Sun Shurong,Han Zhenlai.Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Applied Mathematics and Computation,2011(217):6950-6958.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: