作者:高伟;于开平;林宏; 时间:2016-01-01 点击数:
高伟;于开平;林宏;
1:哈尔滨工业大学航天学院
2:北京宇航系统工程研究所
摘要(Abstract):
为解决载荷识别反问题,研究选取最优正则化参数商函数方法。利用Tikhonov正则化方法的最优化问题的最小二乘解,定义以正则化参数为自变量的商函数;根据不同的正则化参数,使用二次规划理论,求解Tikhonov正则化方法的最优化问题的最优解;基于不同最优解对应商函数的不同特点,将最优正则化参数的商函数方法,与广义交叉检验(Generalized Cross-Validation,GCV)准则所得载荷识别结果进行比较。数值仿真及试验验证结果表明,商函数方法对于共振区及非共振区下载荷识别问题具有较好的合理性和适用性。
关键词(KeyWords):载荷识别;不适定问题;正则化方法;二次规划;形函数
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11372084)
作者(Author):高伟;于开平;林宏;
Email:
参考文献(References):
[1]文祥荣,智浩,孙守光.结构动态载荷识别的精细逐步积分法[J].工程力学,2001,18(4):117-122.Wen X R,Zhi H,Sun S G.Highly precise direct integration scheme for structural dynamic load identification[J].Engineering Mechanics,2001,18(4):117-122.
[2]王晓燕,黄维平,李华军.地震动反演及结构参数识别的EKF算法[J].工程力学,2005,22(4):20-23.Wang X Y,Huang W P,Li H J.Inversion of ground motion and identification of structural parameters by EFK[J].Engineering Mechanics,2005,22(4):20-23.
[3]李东升,郭杏林.逆虚拟激励法随机载荷识别试验研究[J].工程力学,2004,21(2):134-139.Li D S,Guo X L.Experimental random loading identification using inverse pseudo excitation method[J].Engineering Mechanics,2004,21(2):134-139.
[4]Tikhonov A N.Solution of incorrectly formulated problems and the regularization method[J].Soviet Mathematics Doklady,1963,4:1035-1038.
[5]Hoerl A E,Kennard R W.Ridge regression:Biased estimation for non-orthogonal problems[J].Technometrics,Special 40th Anniversary Issue,2000,42(1):80-86.
[6]Kindermann S,Neubauer A.On the convergence of the quasi optimality criterion for(iterated)Tikhonov regularization[J].Inverse Problem,2008,2(2):291-299.
[7]Golub G H,Heath M,Wahba G.Generalized cross-validation as a method for choosing agood ridge parameter[J].Technometrics,1979,21:215-223.
[8]Bonesky T.Morozov's discrepancy principle and Tikhonov-type functionals[J].Inverse Problems,2009,25(1):015015.
[9]Jin B,Lorenz D A.Heuristic parameter-choice rules for convex variational regularization based on error estimates[J].SIAM J.Numer.Anal,2010,48(3):1208-1229.
[10]Hansen P C,Leary D P.The use of the L-curve in the regularization of discreteⅢ-posed problems[J].SIAM Journal on Scientific and Statistical Computing,1993,14:1487-1503.
[11]Hanke M,Hansen P C.Regularization method for large-scale problems[J].Surv.Math.1nd,1993,3:253-315.
[12]Vogel C R.Non-convergence of the L-curve regularization parameter selection method[J].Inverse Problems,1996,12:535-547.
[13]Hansen P C.The L-curve and its use in the numerical treatment of inverse problems[M].Computational Inverse Problems in Electrocardiology,WIT Press,Southampton,2001:119-142.
[14]Varah J M.Pitfalls in the numerical solution of linearⅢ-posed problems[J].SIAM Journal on Scientific and Statistical Computing,1983,4:164-176.
[15]Liu J,Sun X S,Han X,et al.A novel computational inverse technique for load identification using the shape function method of moving least square fitting[J].Computers and Structures,2014,144:127-137.
[16]Coleman T F,Li Y.A reflective Newton method for minimizing aquadratic function subject to bounds on some of the variables[J].Siam Journal on Optimization,1993,6(4):1040-1058.
[17]Gill P E,Murray W,Wright M H.Practical optimization[M].London:Academic Press Inc.,1981.
[18]Gould N,Toint P L.Preprocessing for quadratic programming[J].Mathematical Programming,2004,100(1):95-132.
[19]Choi K,Chang F K.Identification of impact force and location using distributed sensors[J].AIAA Journal,1996,34(1):136-142.
[20]Li Z,Feng Z P,Chu F L.A load identification method based on wavelet multi-resolution analysis[J].Journal of Sound and Vibration,2014,333:381-391.
[21]Mao B Y,Xie S L,Xu ML,et al.Simulated and experimental studies on identification of impact load with the transient statistical energy analysis method[J].Mechanical Systems and Signal Processing,2014,46:307-324.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: