作者:吴红军;李志达;谷笛;邴国强;纪德强;刘悦;王宝辉; 时间:2016-01-01 点击数:
吴红军;李志达;谷笛;邴国强;纪德强;刘悦;王宝辉;
1:东北石油大学化学化工学院
摘要(Abstract):
以Fe为阴极、Ni-Cr合金为阳极,在熔融碳酸盐电解质过程中,采用一步法电解CO2制备蜂窝状单质碳和碳纳米线。利用扫描电子显微镜(SEM)、X线衍射仪(XRD)、透射电子显微镜(TEM)、拉曼光谱仪(RAM)、比表面积测定仪(BET)及激光粒度仪等仪器,分别对碳纳米材料的形貌、晶型结构、比表面积和粒度进行表征。考察电解温度对单质碳形貌的影响,根据计算产碳质量与消耗电荷量的关系,确定最佳电解条件。结果表明:电解温度影响产物的整体形貌及产碳的电流效率,电解温度为850~900K时获得的碳纳米材料形貌呈蜂窝状,电解温度为900~950K时获得的碳纳米材料形貌呈线状。随着电解温度的升高,碳纳米材料的粒径逐渐增加,比表面积逐渐减小。产碳的电流效率随电解温度的升高而降低,在最优电解条件下,电流效率可达82.33%。
关键词(KeyWords):二氧化碳;熔融碳酸盐电解质;电解;蜂窝状单质碳;碳纳米线
Abstract:
Keywords:
基金项目(Foundation):黑龙江省教育厅面上项目(12531072)
作者(Author):吴红军;李志达;谷笛;邴国强;纪德强;刘悦;王宝辉;
Email:
参考文献(References):
[1]Wigley T M L.A combined mitigation/geoengineering approach to climate stabilization[J].Science,2006,314(5798):452-454.
[2]Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.
[3]Elliot T R,Celia M A.Potential restrictions for CO2sequestration sites due to shale and tight gas production[J].Environmental science&technology,2012,46(7):4223-4227.
[4]Shekh A Y,Krishnamurthi K,Mudliar S N,et al.Recent advancements in carbonic anhydrase-driven processes for CO2sequestration:Minireview[J].Critical reviews in environmental science and technology,2012,42(14):1419-1440.
[5]李琴,李治平,胡云鹏,等.深部盐水层CO2埋藏量计算方法研究与评价[J].特种油气藏,2011,18(5):6-10.Li Qin,Li Zhiping,Hu Yunpeng,et al.Assessment of CO2storage calculation for deep saline aquifers[J].Special Oil&Gas Reservoirs,2011,18(5):6-10.
[6]Taheri Najafabadi A.CO2chemical conversion to useful products:An engineering insight to the latest advances toward sustainability[J].International Journal of Energy Research,2013,37(6):485-499.
[7]Kim J H,Jurng T H,Park Y,et al.Characteristics of a chemical lung for carbon dioxide conversion to oxygen[C].ACS Symposium series:Oxford University Press,2010,1056:255-268.
[8]陈红萍,梁英华,王奔.二氧化碳的化学利用及催化体系的研究进展[J].化工进展,2009,28(增刊1):271-278.Chen Hongping,Liang Yinghua,Wang Ben.Chemical utilization of carbon dioxide and research progress of catalytic systems[J].Chemical Industry and Engineering Progress,2009,28(Supp.1):271-278.
[9]Takeguchi T,Furukawa S N,Inoue M,et al.Autothermal reforming of methane over Ni catalysts supported over CaO-CeO2-ZrO2solid solution[J].Applied Catalysis A:General,2003,240(1):223-233.
[10]井强山,方林霞,楼辉,等.甲烷临氧催化转化制合成气研究进展[J].化工进展,2008,27(4):503-507.Jing Qiangshan,Fang Linxia,Lou Hui,et al.Progress of catalytic conversion of methane to syngas in the presence of oxygen[J].Chemical Industry and Engineering Progress,2008,27(4):503-507.
[11]Cassir M,McPhail S J,Moreno A.Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle[J].International Journal of Hydrogen Energy,2012,37(24):19345-19350.
[12]王宝辉,苑丹丹,吴红军,等.太阳能驱动高温熔融碳酸盐电解电势的理论分析[J].大庆石油学院学报,2010,34(5):92-96.Wang Baohui,Yuan Dandan,Wu Hongjun,et al.Theoretical analysis of electrodeposition potentials of carbonates driven by solar energy[J].Journal of Daqing Petroleum Institute,2010,34(5):92-96.
[13]Le V K,Groult H,Lantelme F,et al.Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates[J].Electrochimica Acta,2009,54(19):4566-4573.
[14]Li L,Shi Z,Gao B,et al.Preparation of carbon and oxygen by carbon dioxide electrolysis in LiF-Li2CO3eutectic molten salt[J].Journal of The Electrochemical Society,2016,163(2):E1-E6.
[15]Tomkute V,Solheim A,Olsen E.Investigation of high-temperature CO2capture by CaO in CaCl2 molten salt[J].Energy&Fuels,2013,27(9):5373-5379.
[16]Licht S,Wang B,Wu H.STEP a solar chemical process to end anthropogenic global warming.II:Experimental results[J].The Journal of Physical Chemistry C,2011,115(23):11803-11821.
[17]尹华意.基于高温熔盐化学的减碳和固碳技术研究[D].武汉:武汉大学,2012.Yin Huayi.Study of carbon reduction and carbon sequestration technology based on the high temperature molten salt[D].Wuhan:Wuhan University,2012.
[18]Licht S,Wu H.STEP iron,a chemistry of iron formation without CO2emission:Molten carbonate solubility and electrochemistry of iron ore impurities[J].The Journal of Physical Chemistry C,2011,115(23):25138-25147.
[19]Dipu A L,Ujisawa Y,Ryu J,et al.Electrolysis of carbon dioxide for carbon monoxide production in a tubular solid oxide electrolysis cell[J].Annals of Nuclear Energy,2015,81:257-262.
[20]Kaplan V,Wachtel E,Gartsman K,et al.Conversion of CO2to CO by electrolysis of molten lithium carbonate[J].Journal of the Electrochemical Society,2010,157(4):B552-B556.
[21]Kaplan B,Groult H,Barhoun A,et al.Synthesis and structural characterization of carbon powder by electrolytic reduction of molten Li2CO3-Na2CO3-K2CO3[J].Journal of The Electrochemical Society,2002,149(5):D72-D78.
[22]Cao Y,Xiao L,Sushko M L,et al.Sodium ion insertion in hollow carbon nanowires for battery applications[J].Nano Letters,2012,12(7):3783-3787.
[23]Sharma S,Sharma A,Cho Y K,et al.Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms[J].ACS Applied Materials&Interfaces,2012,4(1):34-39.
[24]Ijije H V,Lawrence R C,Chen G Z.Carbon electrodeposition in molten salts:Electrode reactions and applications[J].RSC Advances,2014,67(4):35808-35817.
[25]Brown S D M,Jorio A,Dresselhaus M S,et al.Observations of the D-band feature in the raman spectra of carbon nanotubes[J].Physical Review B,2001,64(7):073403.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: