作者:陈永恒;姚桂杰;林耀进; 时间:2015-01-01 点击数:
陈永恒;姚桂杰;林耀进;
1:闽南师范大学计算机学院
2:中国石油天然气股份有限公司大港石化分公司
摘要(Abstract):
自动发现话题的隐含结构、情感的极性及其关系,可以方便用户从海量网络评论集中快速获得他们关注的主要观点.提出一种基于非监督式的层次话题的情感(Unsupervised Level Aspect-Sentiment,ULAS)模型,利用贝叶斯非参数性模型作为先验知识,实现非监督式发现未标记评论文本集话题的层次结构,分析层次话题的情感极性.实验结果表明,相比传统的JST和ASUM模型,ULAS模型具备较高的分类精确度和较强的模型泛化能力,能够解决传统话题情感模型只能在单一粒度话题层进行情感分析的问题,实现多粒度话题层的情感分析,满足用户对于评论对象不同粒度话题的情感信息需求.
关键词(KeyWords):非监督式层次话题情感模型;隐藏狄利克雷分配;文本分析;网络评论;主题发现;主题模型;非参贝叶斯模型
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(60373099,60973040,61303131);; 福建省教育厅科技A类项目(JA13196)
作者(Author):陈永恒;姚桂杰;林耀进;
Email:
参考文献(References):
[1]张倩,瞿有利.用于网络评论分析的主题—对立情感挖掘模型[J].计算机科学与探索,2013,7(7):620-629.Zhang Qian,Qu Youli.Topic-opposite sentiment mining model for online review analysis[J].Journal of Frontiers of Computer Science and Technology,2013,7(7):620-629.
[2]Moghaddam S,Ester M.Aspect-based opinion mining from online reviews[C].Tutorial at SIGIR Conference,2012.
[3]Li F,Huang M,Zhu X.Sentiment analysis with global topics and local dependency[C].Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,2010:1371-1376.
[4]Lin C,He Y.Joint sentiment/topic model for sentiment analysis[C].Proceedings of the 18th ACM Conference on Information and Knowledge Management,2009:375-384.
[5]单斌,李芳.基于LDA话题演化研究方法综述[J].中文信息学报,2010,24(6):43-49.Shan Bin,Li Fang.A survey of topic evolution based on LDA[J].Journal of Chinese Information Processing,2010,24(6):43-49.
[6]Jo Y,Oh A H.Aspect and sentiment unification model for online review analysis[C].Proceedings of the Fourth ACM International Conference on Web Search and Data Mining,2011:815-824.
[7]Mukherjee A,Liu B.Aspect extraction through semi-supervised modeling[C]//Proceedings of the 50th annual meeting of the association for computational linguistics.Jeju:Association for Computational Linguistics,2012:339-348.
[8]Blei D M,Griffiths T L,Jordan M I.The nested chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J].Journal of the ACM,2010,57(2):7.
[9]Kim J H,Kim D,Kim S,et al.Modeling topic hierarchies with the recursive chinese restaurant process[C].ACM:Proceedings of the 21st ACM International Conference on Information and Knowledge Management,2012:783-792.
[10]Blei D M.Probabilistic Topic Models[C]//Communications of the ACM.ACM,2012,55(4):77-84.
[11]Pang B,Lee L,Vaithyanathan S.Thumbs up:sentiment classification using machine learning techniques[C]//Proceedings of the2002conference on Empirical methods in natural language processing.Morristown:Association for Computational Linguistics,2002:79-86.
[12]Maes F,Collignon A,Vandermeulen D.Multimodality image registration by maximization of mutual information[J].IEEE Trans.on Medical Imaging,1997,17(16):187-198.
[13]Wilson T,Wiebe J,Hoffmann P.Recognizing contextual polarity in phrase-level sentiment analysis[C]//The conference on human language technology and empirical methods in natural language processing.Vancouver:ACL,2005.
[14]Hu P F,Liu W.Latent topic model for audio retrieval[J].Pattern Recognition,2014,3(47):303-315.
[15]Pang Bao,Lee Lillian.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval,2008,2(1/2):1-135.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: