作者:张文福; 时间:2015-01-01 点击数:
张文福;
1:东北石油大学防灾减灾及防护工程省高校重点实验室
摘要(Abstract):
变分原理的推导一般采用试凑法或Lagrange乘子法.基于固体瞬态热传导的微分方程,利用奥奇西克分部积分法建立固体含源导热问题的Hamilton原理.该原理可以用于构建新的有限元数值算法,也可以用于获得一些复杂边界问题的新解析解.分析Hamilton原理在热传导问题解析解方面的应用,利用康托洛维奇—里茨杂交法给出2个算例的近似解析解和精确解析解,从而证明建立的Hamilton原理及其解析解法的正确性和有效性.讨论基于热质理论的Hamilton原理存在的问题.
关键词(KeyWords):Hamilton原理;解析解;变分法;康托洛维奇—里茨杂交法
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(51178087,51176023);; 黑龙江省教育厅重点项目(12511Z004)
作者(Author):张文福;
Email:
参考文献(References):
[1]克拉夫R W,彭津J.结构动力学[M].2版.北京:科学出版社,2007.Ray Clough,Joseph Penzien.Structural dynamics[M].Beijing:Science Press,2007.
[2]王光远.应用分析动力学[M].北京:人民教育出版社,1981.Wang Guangyuan.Application analysis of dynamics[M].Beijing:People's Education Press,1981.
[3]Hamilton W R.On a general method in dynamics[J].Philosophical Transaction of the Royal Society Part I,1834:247-308;Part II,1835:95-144.
[4]Leipholz H.Direct variational methods and eigenvalue problems in engineering[M].Leyden:Noordhoff International Publishing,1977.
[5]刘殿魁,张其浩.弹性理论中非保守问题的一般变分原理[J].力学学报,1981(6):562-570.Liu Diankui,Zhang Qihao.Some general variational principles for nonconservative problems in theory of elasticity[J].Chinese Journal of Theoretical Applied Mechanics,1981(6):562-570.
[6]Biot M A.Variational principles in heat transfer[M].Oxford:Clarendon Press,1970.
[7]宋柏,吴晶,过增元.基于拉格朗日方程的含源导热问题分析[J].工程热物理学报,2011,32(11):141-144.Song Bai,Wu Jing,Guo Zengyuan.Analysis of heat conduction problem involving heat source using lagrangian equation[J].Journal of Engineering Thermophysics,2011,3(1):141-144.
[8]宋柏,吴晶,过增元.基于热质理论的Hamilton原理[J].物理学报,2010,59(10):7129-7133Song Bai,Wu Jing,Guo Zengyuan.Hamilton's principle based on thermomass theory[J].Acta Physica Sinica,2010,59(10):7129-7133.
[9]Ozisik M N.热传导[M].北京:高等教育出版社,1983.Ozisik M N.Heat conduction[M].Beijing:Higher Education Press,1983.
[10]梁立孚,石志飞.关于变分学中逆问题的研究[J].应用数学和力学,1994,15(9):775-788.Liang Lifu,Shi Zhifei.On the inverse problem in calculus of variations[J].Applied Mathematics and Mechanics,1994,15(9):775-788.
[11]钱伟长.广义变分原理[M].北京:知识出版社,1985.Qian Weichang.Generalized variational principle[M].Beijing:Knowledge Press,1985.
[12]刘高联,宋雪玉,李范春.康托洛维奇—里茨杂交法及其应用[J].力学季刊,2007,28(3):383-388.Liu Gaolian,Song Xueyu,Li Fanchun.Kantorovich-Ritz hybrid method and its applications[J].Chinese Quarterly of Mechanics,2007,28(3):383-388.
[13]Bruce A F.The method of weighted residuals and variational principles:With applications in fluid mechanics,heat and mass transfer[M].New York:Academic Press,1972.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: