作者:王常虹;董汉成;凌明祥;李清华; 时间:2015-01-01 点击数:
王常虹;董汉成;凌明祥;李清华;
1:哈尔滨工业大学空间控制与惯性技术研究中心
摘要(Abstract):
为防止锂离子电池失效导致的系统失效,提出一种基于DS数据融合与支持向量回归机粒子滤波(Support Vector Regression-Particle Filter,SVR-PF)的锂离子电池剩余有效工作时间(Remaining Useful Life,RUL)预测方法.结果表明:该预测方法能够融合不同数据源对锂离子电池RUL的预测结果,改进可用数据较少时RUL的预测准确度.
关键词(KeyWords):锂离子电池;RUL;DS数据融合;SVR-PF
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(61375046);; 中央高校基本科研业务费专项基金项目(HIT.NSRIF 2014031)
作者(Author):王常虹;董汉成;凌明祥;李清华;
Email:
参考文献(References):
[1]Lu Languang,Han Xuebing,Li Jianqiu,et al.A review on the key issues for lithium-ion battery management in electric vehicles[J].Journal of Power Sources,2013,226(1):272-288.
[2]Xing Yinjiao,Eden W M,Tsui K L,et al.Battery management systems in electric and hybrid vehicles[J].Energies,2011,4(12):1840-1857.
[3]Si Xiaosheng,Wang Wenbin,Hu Changhua,et al.Remaining useful life estimation-a review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213(1):1-14.
[4]Wang Dong,Miao Qiang,Michael P.Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J].Journal of Power Sources,2013,239(1):253-264.
[5]Eddahech A,Briat O,Woirgard E,et al.Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications[J].Microelectronics Reliability,2012,52(1):2438-2442.
[6]Seyed Mohammad Rezvanizaniani,Liu Zongchang,Chen Yan,et al.Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle(Ev)safety and mobility[J].Journal of Power Sources,2014,256(1):110-124.
[7]Juan Carlos Alvarez Anton,Paulino Jose Garca Nieto,Cecilio Blanco Viejo,et al.Support vector machines used to estimate the battery state of charge[J].IEEE Transactions on Power Electronics,2013,28(12):5919-5926.
[8]Weng Caihao,Sun Jing,Peng Huei.A unified open-circuit-voltage model of Lithium-Ion Batteries for State-of-Charge estimation and State-of-Health monitoring[J].Journal of Power Sources,2014,258(1):228-237.
[9]Adnan Nuhic,Tarik Terzimehic,Thomas Soczka-Guth,et al.Health diagnosis and remaining useful Life prognostics of lithium-ion batteries using data-driven methods[J].Journal of Power Sources,2013,239(1):680-688.
[10]Gregory L P.Extended Kalman filtering for battery management systems of lipb-based hev battery packs[J].Journal of Power Sources,2004,134(2):252-292.
[11]Dave Andre,Christian Appel,Thomas Soczka-Guth,et al.Advanced mathematical methods of SOC and SOH estimation for lithiumion batteries[J].Journal of Power Sources,2013,224(1):20-27.
[12]He Wei,Nicholas Williard,Michael Osterman,et al.Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the bayesian Monte Carlo method[J].Journal of Power Sources,2011,196(1):10314-10321.
[13]Miao Qiang,Xie Lei,Cui Hengjuan,et al.Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J].Microelectronics Reliability,2013,53(1):805-810.
[14]Bhaskar Saha,Kai Goebel,Scott Poll,et al.Prognostics methods for battery health monitoring using a bayesian framework[J].IEEE Transactions on Instrumentation and Measurement,2009,58(2):291-296.
[15]Dong Hancheng,Jin Xiaoning,Lou Yangbing,et al.Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector Regression-Particle filter[J].Journal of Power Sources,2014,2014(1):114-123.
[16]王常虹,董汉成,凌明祥,等.车用锂离子电池剩余有效工作时间预测方法[J].汽车工程,2015,37(4):476-479.Wang Changhong,Dong Hancheng,Ling Mingxiang,et al.Remaining useful life prediction of automotive lithium-ion battery[J].Automotive Engineering,2015,37(4):476-479.
[17]Priyanka Aggarwal,Deepak Bhatt,Vijay Devabhaktuni.Dempster shafer neural network algorithm for land vehicle navigation application[J].Information Sciences,2013,253:26-33.
[18]Kai Goebel Bhaskar Saha,Jon Christophersen.Comparison of prognostic algorithms for estimating remaining useful life of batteries[J].Transactions of the Institute of Measurement and Control,2009,31(3):293-308.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: