作者:孔祥翠;王微微;陈静静;陈宇; 时间:2014-01-01 点击数:
孔祥翠;王微微;陈静静;陈宇;
1:中国石油大学(华东)信息与控制工程学院
摘要(Abstract):
针对传统独立分量分析(ICA)算法在含噪情况下分离效果不好,容易陷入局部收敛的问题,提出基于入侵性杂草优化(IWO)算法的有噪独立分量分析方法.以分离信号负熵和为目标函数,选用高斯密度函数估计负熵,消除目标函数中的不稳定项,提高算法的稳定性和准确性;采用入侵性杂草优化算法估计混合矩阵,提高算法的全局寻优性能.仿真结果表明:与传统Fast ICA和Fast NoisyICA算法相比,文中算法的分离信号和源信号的相似因数更大,随着信噪比增加,相似因数趋向1,可以更好地估计源信号;PI指标明显小于其他两种算法的,可以更为精确地估计混合矩阵.研究结果对有噪ICA信号处理有一定参考意义.
关键词(KeyWords):入侵性杂草优化算法;有噪独立分量分析;高斯密度函数;混合矩阵
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(51304231);; 山东省自然科学基金项目(ZR2010EQ015)
作者(Author):孔祥翠;王微微;陈静静;陈宇;
Email:
参考文献(References):
[1]Hyvrinen A,Karhunen J,Oja E.独立成分分析[M].周宗潭,董国华,徐昕,等译.北京:电子工业出版社,2007.Hyvrinen A,Karhunen J,Oja E.Independent components analysis[M].Zhou Zongtan,Dong Guohua,Xu Xin,et al,trans.Beijing:Publishing House of Electronics Industry,2007.
[2]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.Yang Fusheng,Hong Bo.The theory and application of independence component analysis[M].Beijing:Tsinghua University Press,2006.
[3]张发启,张斌,张喜斌.盲信号处理及应用[M].西安:西安电子科技大学出版社,2006.Zhang Qifa,Zhang Bin,Zhang Xibin.Operation and application of blind signal[M].Xi'an:Xi'an University of Electronic Science and Technology Press,2006.
[4]LeVan P,Tyvaert L,Moeller F.Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients[J].Neuroimage,2010,49(1):366.
[5]李大辉,李长荣,杨阳.一种改进的瞬时混合语音信号盲分离算法[J].大庆石油学院学报,2007,31(4):80-83.Li Dahui,Li Changrong,Yang Yang.An improved algorithm for blind signal separation of instantaneous speech mixtures[J].Journal of Daqing Petroleum Institute,2007,31(4):80-83.
[6]周云龙,顾杨杨.基于独立分量分析和RBF神经网络的气液两相流流型识别[J].化工学报,2012,63(3):796-799.Zhou Yunlong,Gu Yangyang.Flow regime identification of gas/liquid two-phase flow based ICA and RBF neural networks[J].Ciesc Journal,2012,63(3):796-799.
[7]孟宗,梁智.基于EMMD和BSS的单通道旋转机械故障诊断方法[J].仪器仪表学报,2013,34(3):635-642.Meng Zong,Liang Zhi.Fault diagnosis method for single channel rotating machinery based on EMMD and BSS[J].Chinese Journal of Scientific Instrument,2013,34(3):635-642.
[8]Mehrabian A R,Lucas C.A novel numerical optimization algorithm inspired from weed colonization[J].Ecological Informatics,2006,1(4):355-366.
[9]张氢,陈丹丹,秦仙蓉,等.杂草算法收敛性分析及其在工程中的应用[J].同济大学学报:自然科学版,2010,38(11):1689-1693.Zhang Qing,Chen Dandan,Qin Xianrong,et al.Convergence analysis optimization algorithm in engineering of invasive weed and its application[J].Journal of Tongji University:Natural Science Edition,2010,38(11):1689-1693.
[10]Roy G G,Das S,Chakraborty P,et al.Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm[J].Antennas and Propagation,IEEE Transactions on,2011,59(1):110-118.
[11]Yang H H,Amari S.Adaptive online learning algorithms for blind separation:maximum entropy and minimum mutual information[J].Neural Computation,1997,9(7):1457-1482.
[12]Cardoso J F,Laheld B H.Equivariant adaptive source separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017
[13]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
[14]Zhang H,Shi Z,Guo C,et al.Blind source extraction for noisy mixtures by combining gaussian moments and generalized autocorrelations[J].Neural Processing Letters,2008,28(3):209-225.
[15]Shi Z,Tan X,Jiang Z,et al.Noisy blind source separation by nonlinear autocorrelation[C]//2010 3rd International Congress on Image and Signal Processing(CISP),2010:3152-3156.
[16]Hyvarinen A.Gaussian moments for noisy independent component analysis[J].IEEE Signal Processing Letters,1999,6(6):145-147.
[17]申永军,杨绍普,孔德顺.基于奇异值分解的欠定盲信号分离新方法及应用[J].机械工程学报,2009,45(8):64-70.Shen Yongjun,Yang Shaopu,Kong Deshun.New method of blind source separation in under-determined mixtures based on singular value decomposition and application[J].Journal of Mechanical Engineering,2009,45(8):64-70.
[18]成谢锋,陶冶薇,张少白,等.独立子波函数和小波分析在单路含噪信号盲分离中的应用研究:模型与关键技术[J].电子学报,2009,37(7):1522-1528.Cheng Xiefeng,Tao Yewei,Zhang Shaobai,et al.Applications of independent sub-band functions and wavelet analysis in singlechannel noisy signal BSS:model and crucial technique[J].Acta Electronic Signal,2009,37(7):1522-1528.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: