作者:魏连锁;孙明;张媛媛;张恩鸣; 时间:2013-01-01 点击数:
魏连锁;孙明;张媛媛;张恩鸣;
1:齐齐哈尔大学计算机与控制工程学院
2:大庆油田有限责任公司电力集团
3:大庆油田有限责任公司天然气分公司
摘要(Abstract):
为了解决PID控制器参数整定过程中的优化和复杂性问题,增强PID控制器参数整定的自适应性,结合差异演化算法和粒子群算法,提出一种带有差异演化变异算子的粒子群混合优化算法,利用一维云模型映射器将人的控制经验通过语言原子转换为控制规则器,设计具有自适应功能的云模型控制器;将该优化算法应用于一维云模型PID控制器参数整定与优化,并与传统方法进行仿真比较.结果表明,基于带有差异演化变异算子的粒子群混合优化算法的智能控制器具有简单易行、控制性能良好、自适应性和鲁棒性强的特点,可为云模型控制器参数设计提供参考.
关键词(KeyWords):PID控制器;云模型;差异演化;粒子群;混合算法
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金青年科学基金项目(61100103);; 黑龙江省自然科学基金面上项目(F201219)
作者(Author):魏连锁;孙明;张媛媛;张恩鸣;
Email:
参考文献(References):
[1]Hua Y.Estimating two-dimensional frequencies by matrix enhancement and matrix pencil[J].IEEE Trans.Signal Process,2001,40(9):2267-2280.
[2]Lank G W,Reed I S,Pollon G E.A semi coherent detectionand doppler estimation statistics[J].IEEE Trans.Aerosp.Eleetron.Syst,2011,9:151-165.
[3]Kay S.A fast and accurate single frequency estimator[J].JEEE Trans.Acoust Speech Signal Process,2010,37(12):1987-1990.
[4]Li Shiyong,Li Panchi.Quantum genetic algorithm based on real encoding and gradient information of object function[J].Journal ofHarbin Institute of Technology,2010,38(8):1216-1218.
[5]杨贤军.基于模糊理论的智能PID控制器设计[J].制造业自动化,2013,35(2):115-118.Yang Xianjun.The design of intelligent PID controller based on fuzzy theory[J].Manufacturing Automation,2013,35(2):115-118.
[6]任伟建,杜红嘉,郇启亮.神经网络PID控制器在油田标定间上的应用[J].大庆石油学院学报,2001,25(2):27-30.Ren Weijian,Du Hongjia,Huan Qiliang.Application of neural network PID controller to the calibration shop of oilfield[J].Journalof Daqing Petroleum Institute,2001,25(2):27-30.
[7]郑雪梅,姜成国,周广铭.模糊PID控制器结构[J].大庆石油学院学报,2000,24(3):46-51.Zheng Xuemei,Jiang Chengguo,Zhou Guangming.Structure of fuzzy PID controllers[J].Journal of Daqing Petroleum Institute,2000,24(3):46-51.
[8]姜立强,刘光斌,郭铮.基于差分进化算法的PID参数整定[J].计算机仿真,2012,26(6):204-208.Jiang Liqiang,Liu Guangbin,Guo Zheng.Parameter tuning of PID controller based on differential evolution[J].Computer Simula-tion,2012,26(6):204-208.
[9]Souriee A,Plantier G,Saumet J L.Two-dimensional frequency estimation using autocorrelation phase fitting[C].Hongkong:Proc.Int.Conf.Acoustics,Speech,Signal Processing(ICASSP),2011:445-448.
[10]唐玉兰,徐明亮.粒子群算法在PID控制器参数整定中的研究与应[J].计算机工程与应用,2012,25(9):45-49.Tang Yulan,Xu Mingliang.Research and application of particle swarm optimization in parameter tuning on PID controller[J].Com-puter Engineering and Applications,2012,25(9):45-49.
[11]邓丽,蒋婧,费敏锐.基于免疫粒子群算法的PID参数整定与自适应[J].自动化仪表,2013,34(2):65-71.Deng Li,Jiang Jing,Fei Minrui.PID parameters tuning and adaptation based on immunity particle swarm optimization[J].ProcessAutomation Instrumentation,2013,34(2):65-71.
[12]霍延军.基于量子粒子群算法的PID参数自整定方法[J].微电子学与计算机,2012,29(10):194-197.Huo Yanjun.Auto-tuning of optimum PID controller parameters based on quantum-behaved particle swarm optimization[J].Microe-lectronics&Computer,2012,29(10):194-197.
[13]曾现峰,李波,侯春.基于改进微粒群优化的PID控制器参数整定[J].工业控制与应用,2012,26(10):24-28.ZengXianfeng,LiBo,HouChun.TuningofPIDcontrollerparametersbasedonimprovedparticleswarmoptimization[J].Techniques of Automation and Applications,2012,26(10):24-28.
[14]高峰.基于小波网络的PID控制器参数整定研究[J].洛阳理工学院学报,2012,22(1):60-64.Gao Feng.The tuning method of PID parameters based on WNN[J].Journal of Luoyang Institute of Science and Technology,2012,22(1):60-64.
[15]王芳,谢克明,刘建霞.基于群体智能的思维进化算法设计[J].控制与决策,2010,25(1):145-148.Wang Fang,Xie Keming,Liu Jianxia.Swarm intelligence based MEA design[J].Control and Decision,2010,25(1):145-148.
[16]付伟,杨先一,柴毅,等.网络控制系统的自整定PID控制器设计[J].控制与决策,2011,27(8):146-149.Fu Wei,Yang Xianyi,Chai Yi,et al.Design of self-adjusting PID controller for networked control systems[J].Control and Deci-sion,2012,27(8):1231-1236.
[17]李洁,柴天佑,宫经宽.基于交叉熵算法的PID控制器设计[J].控制与决策,2011,26(5):794-796.Li Jie,Chai Tianyou,Gong Jingkuan.Design of PID controller using cross entropy method[J].Control and Decision,2011,26(5):794-796.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: