作者:葛琦;侯成敏; 时间:2012-01-01 点击数:
葛琦;侯成敏;
1:延边大学理学院数学系
摘要(Abstract):
研究一类带有分数阶边界条件的分数阶差分方程多重正解的存在性.分析该方程的Green函数的性质,引入上、下解的概念,并利用Guo-Krasnosel'skii不动点定理和上、下解的方法,分别建立该方程存在正解的充分条件,最后利用Legget-Williams不动点定理,讨论该方程多重正解的存在性.
关键词(KeyWords):分数阶边界条件;Green函数;上、下解方法;多重正解
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11161049);; 延边大学科研项目(延大科合字[2010]第004号)
作者(Author):葛琦;侯成敏;
Email:
参考文献(References):
[1]Atici F M,Eloe P W.Initial value problems in discrete fractional calculus[J].Proc.Amer.Math.Soc,2009,137(3):981-989.
[2]Atici F M,Eloe P W.Two-point boundary value problems for finite fractional difference equations[J].J.Difference Equ.Appl,2011,17(4):445-456.
[3]Goodrich.C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].J.Comput.Math.Appl,2011,61(2):191-202.
[4]Goodrich C S.On a fractional boundary value problem with fractional boundary conditions[J].Appl Math Lett,2012,25(8):1101-1105.
[5]Goodrich C S.Solutions to a discrete right-focal boundary value problem[J].Int.J.Difference Equ.2010,5(2):195-216.
[6]Chen Fulai,Luo Xiannan,Zhou Yong.Existence Results for Nonlinear Fractional Difference Equation[J].J.Advances in DifferenceEquations,2011,2011(1):12.
[7]Goodrich C S.On discrete sequential fractional boundary value problems[J].J.Math.Anal.Appl,2012,385(1):111-124.
[8]Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].J.Applied Mathematicsand Computation,2011,217(9):4740-4753.
[9]Zhao Yige,Sun Shurong,Han Zhenlai.The existence of multiple positive solutions for boundary value problems of nonlinear fractionaldifferential equations[J].J.Commun Nonlinear Sci Numer Simulat.2011(16):2086-2097.
[10]时宝,张德存,盖明久.微分方程理论及其应用[M].北京:国防工业出版社,2005:13.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: