作者:许少华;庞跃武;王兵; 时间:2011-01-01 点击数:
许少华;庞跃武;王兵;
1:东北石油大学计算机与信息技术学院
摘要(Abstract):
针对时变信号模式分类问题,建立一种过程支持向量机模型.该模型的输入为时变函数,通过核函数变换将动态模式映射到高维特征空间,经过学习训练集中函数样本类别特性,自适应提取动态模式的过程特征,直接分类辨识时变信号.证明过程支持向量机与单隐层前馈过程神经元网络的二分类能力等价;将复杂的动态模式集合非线性地映射到高维特征空间,提高动态模式的可分性;传统支持向量机是过程支持向量机的一种特例等理论性质.
关键词(KeyWords):过程支持向量机;过程神经元模型;核函数;时变函数;支持向量机;模式分类
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金(60572174);;
中国石油科技创新基金(2010D-5006-0302)
作者(Author):许少华;庞跃武;王兵;
Email:
参考文献(References):
[1]Vapnik V N.Statistical learning theory[M].New York:Wildy,1998.
[2]Felipe C,Steve S.On the mathematical foundations of learning[J].Bulletin of the American Mathematical Society,2001,39(1):1-49.
[3]马勇,丁晓青.基于层次型支持向量机的人脸检测[J].清华大学学报:自然科学版,2003,43(1):35-38.
[4]高学,金连文,尹俊勋,等.一种基于支持向量机的手写汉字识别方法[J].电子学报,2002,30(5):651-654.
[5]杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报:工学版,2003,37(5):522-527.
[6]El-Bakry H M,Nikos M.A new approach for fast face detection[J].WSEAS Transactions on Information Science and Applications,2006,3(9):1725-1730.
[7]Zhang Ling,Zhang Bo.Statistical learning theory and its application to pattern recognition[C].SPIE 2001Image Extraction,2001.
[8]周继德.用功率曲线法判断和调整抽油机的平衡[J].石油矿场机械,1988,17(5):7-9.
[9]邱宏茂,范万春,孙煜.基于能量分布特征的地震事件自动识别[J].核电子学与探测技术,2004,24(6):698-701.
[10]洪涛,王申康.基于图像特征分析的人体正面运动跟踪研究[J].浙江大学学报,2005,39(6):845-847.
[11]刘显德,刘立伟,许少华,等.一种过程神经元网络模型及其在动态预测中的应用[J].大庆石油学院学报,2008,32(4):107-110.
[12]许少华,路阳,席海青,等.样本先验知识在神经网络训练中的应用[J].大庆石油学院学报,2004,28(6):66-69.
[13]许少华,王皓,王颖,等.基于过程神经网络的多维动态信息处理技术[J].大庆石油学院学报,2010,34(5):145-149.
[14]何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44.
[15]许少华,何新贵.关于连续过程神经元网络的一些理论问题[J].电子学报,2006,34(10):1838-1841.
[16]Cover T M.Geometrical and statistical properties of systems of linear inequalities with applications to pattern recognition[J].IEEETransactions on Electronic Computers,1965,14(3):326-334.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: