作者:唐莉; 时间:2019-01-01 点击数:
唐莉;
1:大庆师范学院教师教育学院
摘要(Abstract):
基于奇异值分解(SVD)方法和高维动力学系统的瞬态响应特性,提出改进奇异值分解方法;应用牛顿第二定律,建立自由度为16的两端带有滑动轴承支承和发生基础松动故障的转子系统模型;采用改进奇异值分解方法,将原始系统降维为自由度为3的简化系统模型,对比原始系统与简化系统模型动力学特性。结果表明:降维后的简化系统模型保留原始系统的主要分岔特性及均方差幅值特性,验证改进奇异值分解方法对高维动力学系统降维的有效性。该结果为高维非线性动力学系统定性分析提供指导。
关键词(KeyWords):改进奇异值分解方法;动力学系统;转子;降维;分岔;均方差幅值
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(11802235)
作者(Author):唐莉;
Email:
参考文献(References):
[1]陈予恕.非线性振动[M].北京:高等教育出版社,2002:1-10.CHEN Yushu.Nonlinear Vibration[M].Beijing:Higher Education Press,2002:1-10.
[2]陈予恕.非线性振动系统的分岔和混沌理论[M].北京:高等教育出版社,1993:208-223.CHEN Yushu.Bifurcation and chaos theory of nonlinear vibration systems[M].Beijing:Higher Education Press,1993:208-223.
[3]GUO Shangjiang,YAN Shuling.Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect[J].Journal of Differential Equations,2016,260(1):781-817.
[4]张家忠,陈丽莺,梅冠华,等.基于时滞惯性流形的浅拱动力屈曲研究[J].振动与冲击,2009,28(6):100-104.ZHANG Jiazhong,CHEN Liying,MEI Guanhua,et al.Dynamic bucking analysis of shallow parabolic arch based on the method of inertial manifolds with time delay[J].Journal of Vibration and Shock,2009,28(6):100-104.
[5]MARTINE M.Approximate inertial manifolds for reaction-diffusion equations in high space dimension[J].Journal of Dynamics and Differential Equantions,1989,1(3):245-267.
[6]LU Kuan,JIN Yulin,CHEN Yushu,et al.Stability analysis of reduced rotor pedestal looseness fault model[J].Nonlinear Dynamics,2015,82(4):1611-1622.
[7]REGA G,TROGER H.Dimension reduction of dynamical systems:methods,models,applications[J].Nonlinear Dynamics,2005,41(1):1-15.
[8]张永强,易亮.基于奇异值分解的航空发动机转子碰摩故障特征提取方法[J].应用力学学报,2019,36(2):260-266.ZHANG Yongqiang,YI Liang.Extraction method of rub-impact fault behaviors of aero-engine's rotor based on singular value decomposition[J].Journal of Applied Mechanics,2019,36(2):260-266.
[9]YU Hai,CHEN Yushu,CAO Qingjie.Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings[J].Applied Mathematics and Mechanics,2013,34(6):777-790.
[10]LU Kuan,JIN Yulin,CHEN Yushu,et al.Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems[J].Mechanical Systems and Signal Processing,2019,123:264-297.
[11]MA Hui,ZENG Jin,FENG Ranjiao,et al.Review on dynamics of cracked gear systems[J].Engineering Failure Analysis,2015,55:224-245.
[12]ZENG Jin,CHEN Kangkang,MA Hui,et al.Vibration response analysis of a cracked rotating compressor blade during run-up process[J].Mechanical Systems and Signal Processing,2019,118:568-583.
[13]MA Hui,ZHAO Xueyan,TENG Yunnan,et al.Analysis of dynamic characteristics for a rotor system with pedestal looseness[J].Shock and Vibration,2011,18(1/2):13-27.
[14]陈果.含不平衡-碰摩-基础松动耦合故障的转子-滚动轴承系统非线性动力响应分析[J].振动与冲击,2008,27(9):100-104.CHEN Guo.Nonlinear dynamic response analysis of rotor-ball bearing system including unbalance-looseness coupled faults[J].Journal of Vibration and Shock,2008,27(9):100-104.
[15]张尚斌.列车轴承轨边声学诊断中故障声谱识别的时变阵列分析技术研究[D].合肥:中国科学技术大学,2017:67-87.ZHANG Shangbin.Research on time-varying array analysis of fault spectrum identification in trackside acoustic diagnosis of train bearing[D].Hefei:University of Science and Technology of China,2017:67-87.
[16]LU Kuan,YU Hai,CHEN Yushu,et al.A modified nonlinear POD method for order reduction based on transient time series[J].Nonlinear Dynamics,2015,79(2):1195-1206.
[17]LU Kuan,CHEN Yushu,JIN Yulin,et al.Application of the transient proper orthogonal decomposition method for order reduction of rotor systems with faults[J].Nonlinear Dynamics,2016,86(3):1913-1926.
[18]LU Kuan,CHEN Yushu,CAO Qingjie,et al.Bifurcation analysis of reduced rotor model based on nonlinear transient POD method[J].International Journal of Non-Linear Mechanics,2017,89:83-92.
[19]JIN Yulin,LU Kuan,HOU Lei,et al.An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system[J].Journal of Sound and Vibration,2017,411:210-231.
[20]ADILETTA G,GUIDO A R,ROSSI C.Chaotic motions of a rigid rotor in short journal bearings[J].Nonlinear Dynamics,1996,10(3):251-269.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: