作者:李兆敏;王鹏;李松岩;孙乾;李杨;姜磊;王继乾; 时间:2014-01-01 点击数:
李兆敏;王鹏;李松岩;孙乾;李杨;姜磊;王继乾;
1:中国石油大学石油工程学院
2:中国石油大学重质油国家重点实验室
摘要(Abstract):
CO2驱油时,由表面活性剂溶液产生的CO2泡沫稳定性较差,加入纳米颗粒后可与表面活性剂产生协同作用,从而提高CO2泡沫的稳定性.通过泡沫评价实验、界面张力实验和扩张黏弹性模量实验,研究改性SiO2纳米颗粒与表面活性剂十二烷基硫酸钠(SDS)对CO2泡沫的协同稳定作用.结果表明:SiO2纳米颗粒与水的接触角大于79.83°时,能与SDS产生有效协同稳定作用,且协同稳定作用仅在SDS/SiO2混合溶液一定质量浓度比区间范围内存在,当质量浓度比为0.10~0.40时,协同稳定作用随质量浓度比增大,呈现先增强后减弱的规律;当质量浓度比为0.17左右时协同稳定作用最强;当质量浓度比大于0.40时,二者无有效协同稳定作用.SDS与SiO2纳米颗粒对CO2泡沫的协同稳定机理主要包括改善颗粒在界面的吸附位置、减弱歧化作用、改善界面性质及增大体相黏度.研究结果对提高三次采油中CO2驱的采收率具有指导意义.
关键词(KeyWords):CO2泡沫;SiO2纳米颗粒;SDS;质量浓度比;协同稳定作用
Abstract:
Keywords:
基金项目(Foundation):国家自然科学基金项目(51274228,51304229,U1262102);; 山东省自然科学基金项目(2012ZRE28014);; 中央高校基本科研业务费专项资金资助项目(13CX02061A,13CX05018A);; 中国石油大学(华东)科研启动基金项目(Y1204101)
作者(Author):李兆敏;王鹏;李松岩;孙乾;李杨;姜磊;王继乾;
Email:
参考文献(References):
[1]Nguyen N M.Systematic study of foam for improving sweep efficiency in chemical enhanced oil recovery[D].Austin:The University of Texas at Austin,2010.
[2]Li R F,Yan W,Liu S,et al.Foam mobility control for surfactant enhanced oil recovery[J].SPE J,2010,15(4):934-948.
[3]Seyedeh H T,Rahim M,Pacelli L J.Foam assisited CO2-EOR:Concepts,challenges and applications[C].SPE 165280,2013.
[4]Hanssen J E,Dalland M.Increased oil tolerance of polymer-enhanced foams:Deep chemistry or just"simple"displacement effects[C].SPE 59282,2000.
[5]Zhang T,Davidson D,Bryant S L,et al.Nanoparticle-stabilized emulsions for applications in enhanced oil recovery[C].SPE 129885,2010.
[6]Rodriguez E,Roberts M,Yu H,et al.Enhanced migration of surface-treated nanoparticles in sedimentary rocks[C].SPE 124418,2009.
[7]Zhang T,David A Espinosa,Ki Youl Yoon,et al.Engineered nanoparticles as harsh-condition emulsion and foam stabilizers and as novel sensors[C].Houston:Offshore Technology Conference,2011.
[8]Binks B P,Horozov T S.Aqueous foams stabilized solely by silica nanoparticles[J].Angewandte Chemie,2005,117(24):3788-3791.
[9]Hunter T N,Pugh R J,Franks G V.The role of particles in stabilizing foams and emulsions[J].Adv Colloid Interface Sci,2008,137:57-81.
[10]Kruglyakov P M,Elaneva S I,Vilkova N G.About mechanism of foam stabilization by solid particles[J].Advances in Colloid and Interface Science,2011,165(2):108-116.
[11]Tommy S Horozov.Foams and foam films stabilized by solid particles[J].Current Opinion in Colloid&Interface Sci,2008,13:134-140.
[12]张水燕.锂皂石及HMHEC与表面活性剂协同稳定的泡沫[D].济南:山东大学,2008.Zhang Shuiyan.Foams stabilized by laponite/surfactants and HMHEC/surfactants[D].Ji'nan:Shandong University,2008.
[13]王腾飞,王杰祥,韩蕾,等.纳米氢氧化铝稳定泡沫性能研究[J].西安石油大学学报:自然科学版,2012,27(5):78-81,11.Wang Tengfei,Wang Jiexiang,Han Lei,et al.Study on the stabilizing effect of aluminum hydroxide nanoparticles on foam stabilized[J].Journal of Xi'an Shiyou University:Natural Science Edition,2012,27(5):78-81,11.
[14]Yu J,Mo D,Liu N,et al.The Application of nanoparticle-stabilized CO2foam for oil recovery[C].SPE 164074,2013.
[15]Hariz T R.Nanoparticle-stabilized CO2foams for potential mobility control applications[D].Austin:The University of Texas at Austin,2012.
[16]Espinoza D A,Caldelas F M,Johnston K P,et al.Nanoparticle-stabilized supercritical CO2foams for potential mobility control applications[C].SPE 129925,2010.
[17]Sun Y Q,Gao T.The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles:experimental simulations[J].Metallurgical and Materials Transactions A,2002,33(10):3285-3292.
[18]Binks B P,Horozov T S.Colloidal particles at liquid interfaces:An introduction in colloidal particles at liquid interfaces[M].Cambridge Univ.Press,2006.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: