作者:胡金燕;孔令彬; 时间:2011-01-01 点击数:
胡金燕;孔令彬;
1:东北石油大学数学科学与技术学院
摘要(Abstract):
利用锥不动点指数和Green函数性质,研究一类含有双参数的二阶非线性周期边值问题,并证明其正解的存在性.
关键词(KeyWords):周期边值问题;正解;锥;不动点指数;格林函数
Abstract:
Keywords:
基金项目(Foundation):
作者(Author):胡金燕;孔令彬;
Email:
参考文献(References):
[1]Cabada A.The method of lower and upper solutions for second,third,fourth and higher order boundary value problems[J].J.Math.Anal.Appl,1994,85:302-320.
[2]Yao Q L.Positive solutions of nonlinear second order periodic boundary value problems[J].Appl.Math.Letters,2007,20:583-590.
[3]Li Y X.On the existence and uniqueness for higher order periodic boundary value problems[J].Nonlinear Analysis,2009,70:711-718.
[4]Li Y X.Positive solutions of fourth order periodic boundary value problems[J].Nonlinear Analysis,2003,54:1069-1078.
[5]Kong L B.Positive solution of a singular nonlinear third order periodic boundary value problem[J].J.Comput.Appl.Math,2001,132:247-253.
[6]Hao X N,Liu L S,Wu Y H.Existence and multiplicity results for nonlinear periodic boundary value problems[J].Nonlinear Analy-sis,2010,72:3635-3642.
[7]Tian Y,Jiang D Q,Ge W G.Multiple positive solutions of periodic boundary value problems for second order impulsive differential e-quations[J].Appl.Math.Comput,2008,200:123-132.
[8]Liu B G,Liu L S,Wu Y H.Existence of nontrivial periodic solutions for a nonlinear second order periodic boundary value problem[J].Nonlinear Analysis,2010,72:3337-3345.
[9]Guo D,V.Lakshmikantham.Nonlinear problems in abstract cones[M].New York:Academic Press,1988.
2019 版权所有©东北石油大学 | 地址:黑龙江省大庆市高新技术产业开发区学府街99号 | 邮政编码:163318
信息维护:学报 | 技术支持:现代教育技术中心
网站访问量: